Undergraduate Student Handbook
2021-2022

INTRODUCTION

WHAT IS GEOSCIENCE AND WHY STUDY IT?

GEOSCIENCES AT VIRGINIA TECH

ACADEMICS

UNDERGRADUATE CURRICULUM

UNDERGRADUATE ADVISING

Student Responsibility

Advisor Responsibility

Geology Option

Geochemistry Option

Geophysics Option

Geobiology and Paleobiology Option

Environmental and Engineering Geoscience Option

Earth Science Education Option

Geosciences Minor

Foreign Language Requirement

Field Camp

GEOS Free Time, “GeoTuesdays”

Policy 91: Progress Towards Degree

TRANSFERRING INTO GEOSCIENCES

TRANSFER OF COURSE CREDIT FROM OTHER SCHOOLS

FRESHMAN COMPUTER REQUIREMENTS

EMPLOYMENT OUTLOOK

FACILITIES AND SERVICES

THE GEOSCIENCES LIBRARY

THE MUSEUM OF GEOSCIENCES FACILITIES AND PROGRAMS

COMPUTER LABS

PIDs AND E-MAIL

SEMINARS

PROFESSIONAL DEVELOPMENT

GEOLOGY CLUB

GEOPHYSICAL SOCIETY OF VIRGINIA TECH

SIGMA GAMMA EPSILON

AMERICAN ASSOCIATION OF PETROLEUM GEOLOGIST

Black Students in STEM at VT (BSS)

Widening Inclusivity in the Geosciences (WINGS)
INTRODUCTION

The most critical questions for anyone to ask when considering college are, “What should I study, and what is the best school for me?” These questions are more easily asked than answered.

This handbook was prepared to help provide some insight into the nature of the geosciences in general and into the Virginia Tech Department of Geosciences’ undergraduate program more specifically. It is a mere outline of a complex and constantly changing science. Therefore, if you are interested in pursuing a career in the geosciences and are not a student at Virginia Tech, we suggest that you visit our campus to see our facilities and to talk with our students and faculty.

We are eager to recruit talented students into our diverse science, but more importantly, we want to help each of you find the field for which you are best suited. We invite you to visit at any time, but we recommend calling ahead first so that we are able to schedule appointments for you with the most appropriate individuals. We also encourage you to browse our homepage at http://www.geos.vt.edu/.

The Department of Geosciences is housed in the center section of Derring Hall, located on the north side of Virginia Tech’s main campus in Blacksburg, Virginia. Dr. W. Steven Holbrook is the department head. Our mailing address is: Virginia Tech Department of Geosciences, Room 4044 Derring Hall, 926 W. Campus Drive, Blacksburg, VA 24061; Telephone: (540) 231-6521; Fax: (540) 231-3386; E-mail: <geosciences@vt.edu>.

WHAT IS GEOSCIENCE AND WHY STUDY IT?

Geo is derived from Greek for earth; hence, in its broadest form, geology is the study of the earth and all aspects of its composition, history, and active processes.

Although there are now a great many sub-disciplines and areas of specialization, the geosciences program at Virginia Tech offers six basic major undergraduate options: geology, geochemistry, geophysics, geobiology and paleobiology, environmental and engineering geosciences, and earth science education. The differences lie primarily in the means of observation, and in the approaches and tools they use:

- Geologists rely primarily on direct observations (e.g., examining the minerals, observing the folds and faults, measuring the thickness of rock sequences, and identifying fossils).
- Geochemists examine earth materials and systems in terms of the distributions of chemical elements and compounds and model the geochemical cycles in which these move.
- Geophysicists rely primarily on indirect observation through the use of magnetic, electrical, and seismic measurements (e.g., mapping and imaging the subsurface using seismic, electrical, gravity, and magnetic data).
- Geobiologists and paleobiologists study modern and ancient plants and animals to construct the history of life on earth and the ways in which life has modified the environments in which it lives.
- Environmental and engineering geoscientists use observations and measurements of earth’s near-surface to provide advice for civil engineering projects and environmentally sensitive regions.
- Our undergraduate earth science education option provides students with a broad earth science curriculum that meets the earth science content area goals for secondary earth science teaching.

All six undergraduate options complement one another and often overlap, with many of the courses that we offer being shared between several options.

Geosciences at Virginia Tech

The geosciences today involve the most sophisticated techniques of physics, chemistry, biology, geotechnical studies, and materials science, and their applications to the study of natural processes and systems. Research topics are diverse; for example, experimental and theoretical examination of the polymerization of silicate magmas, the discovery and evolution of mineral resources, and computerized seismic tomography of the earth to image the earth's interior structures.

In the broadest sense, a geoscientist's laboratory is the earth itself, but the realms of study may range from the distribution of atoms on mineral surfaces, to the high mountains of western North America, to mid-ocean ridges where ore deposits are forming, to modern limestone reefs, to the waters flowing in aquifers, to computer modeling systems.

Research in the Department of Geosciences at Virginia Tech covers as wide a spectrum as that in any university in the United States, including:

- Experimental laboratories can simulate the temperature and pressure conditions that exist kilometers deep in the earth, allowing detailed examination of the processes of crystallization of rocks and minerals.
- The geophysics research group uses sophisticated computer analysis of seismic data to characterize subsurface structures for resource exploration, environmental monitoring and control, and earthquake mechanisms; they produce and use “CAT scans” of subsurface geologic structures.
- Research on igneous and metamorphic rocks and ores ranges from examination and chemical analysis of small parts of mineral grains using electron microscopy and microanalysis, to isotopic analysis of rocks and minerals and the spectroscopic characterization of fluids in the deep crust of the earth.
- Mineralogical research includes X-ray crystallography and *ab initio* quantum mechanical modeling of mineral structures and reaction mechanisms.
• Structural geology studies range from characterizing the megascale plate tectonic processes that have shaped the Himalaya and other mountains to analyzing the deformation mechanisms within individual mineral grains in folded and faulted rocks.
• Research in hydrogeology includes studies on groundwater flow in porous and fractured rocks, aquifer mechanics, storage and recharge processes, and transport of contaminants in groundwater.
• Sedimentologic studies span ancient to modern sedimentary rocks and attempt to understand global tectonic and climatic controls on depositional systems, as well as their porosity and diagenetic evolution.
• The geobiology and paleobiology group analyzes the fossil record of microbes, plants, and animals in order to reconstruct the evolutionary and ecological history of the biosphere and to understand the interactions between biological and geological processes in the geological past.

ACADEMICS

UNDERGRADUATE CURRICULUM

The Department of Geosciences offers six undergraduate options, each of which is briefly described below. The specific course requirements are summarized on checksheets, which are also available at https://registrar.vt.edu/graduation-multi-brief/index1.html.

The website details the requirements to complete a Bachelor of Sciences Degree in Geosciences for the department, the college, and the university. Note that the College of Science requirements match or exceed those of the university core. Each student should read this information in the University Catalog under the “Academic” section.

UNDERGRADUATE ADVISING

Ms. April Newcomer, Advising and Enrollment Manager, is the academic advisor for the department. Her office is located in 4050 Derring Hall. She will help in the selection of major courses and in finding solutions to academic problems. Your faculty career advisor will help in identifying career options. You are encouraged to meet regularly with both advisors to take maximum advantage of the help available.

Student Responsibility

Students are responsible for knowing and observing the regulations in the Undergraduate Course Catalog at http://www.undergradcatalog.registrar.vt.edu/. The responsibility for verification of information and completion of degree requirements rests with the student.
Advisor Responsibility

The advisor(s) share the responsibility for developing an advising partnership with the undergraduate student.

Geology Option

The undergraduate geology option is designed to provide a background for the student to go on to graduate school or to enter the job market with a B.S. degree.

The required geology courses include Earth’s dynamic systems, geoscience fundamentals, geoscience field observations, mineralogy, structural geology, elementary geophysics, igneous and metamorphic petrology, sedimentary/stratigraphy, tectonics and all corresponding laboratories, a field course, senior seminar, and several elective courses. The courses are sequenced to progressively increase the students’ depth and breadth in the geosciences.

Geologists rely heavily upon the collateral sciences; hence, geology majors must take a course in chemistry, biology, and physics with their corresponding laboratories. Because the acquisition and processing of geological data requires quantitative and spatial analysis, geology students are required to take courses in calculus, statistics, computational methods and geographic information systems (GIS).

Geochemistry Option

The undergraduate geochemistry option is designed for those students who have a special interest in the chemical aspects of the earth and its materials. It is intended that many students will move on from this program to more advanced graduate training in one or more of the specific disciplines of geochemistry, but the program is also sufficiently flexible that a course of study can be constructed to prepare the student for technical geochemical employment at the bachelor’s level.

The required geology courses include Earth’s dynamic systems, geoscience fundamentals, geoscience field observations, mineralogy, structural geology, igneous and metamorphic petrology, sedimentation/stratigraphy, environmental geochemistry, all corresponding laboratories, a research project or study abroad, and senior seminar.

Because the acquisition and processing of geological data requires quantitative and spatial analysis, geochemistry students must take mathematics courses through multivariable calculus, statistics, computational methods and geographic information systems (GIS). Students in this option take a year each of physics and chemistry (including the corresponding laboratories). The student selects upper level courses from a broad choice of scientific, mathematical, and engineering disciplines across the university to complete the program.
Geophysics Option

The undergraduate geophysics curriculum prepares students for professional employment and for continued study in graduate school.

The required courses in the Department of Geosciences include Earth's dynamic systems, geoscience fundamentals, geoscience field observations, mineralogy, structure, sedimentation/stratigraphy, igneous and metamorphic petrology, senior seminar, and upper level geophysics courses including potential field methods, exploration seismology, tectonics and earthquake seismology (including all corresponding laboratories).

Because the acquisition and processing of data requires quantitative and spatial analysis methods, geophysics students must take mathematics courses through differential equations, statistics, computational methods and geographic information systems (GIS). In addition, one year of physics and one semester of chemistry (including corresponding laboratories) are required. Additional science courses must be selected from a list of geoscience, physics, and math courses.

Geobiology and Paleobiology Option

The undergraduate geobiology and paleobiology option prepares students for professional employment and for continued study in graduate school.

The required courses in the Department of Geosciences include Earth's dynamic systems, geoscience fundamentals, geoscience field observations, mineralogy, structure, sedimentation/stratigraphy, geosciences outreach, paleontology, paleontology laboratory techniques, and Earth system history, in addition to other choices of paleontology courses and research.

Because the acquisition and processing of data often requires quantitative and spatial analysis methods, geobiology and paleobiology students are required to take mathematics courses including calculus, statistics, computational methods and geographic information systems (GIS). In addition, biology courses (including corresponding laboratories) are required.

Environmental and Engineering Geosciences Option

The undergraduate environmental and engineering geoscience option provides students with the knowledge and skills needed to prevent and solve problems related to human interaction with the natural world. This program is designed to put students directly on track to become a licensed Professional Geologist.

The required courses in the Department of Geosciences include Earth's dynamic systems, geoscience fundamentals, geoscience field observations, mineralogy, structure,
sedimentation/stratigraphy, environmental geosciences, elementary geophysics, geomorphology, groundwater hydrology, and engineering geology.

Because the acquisition and processing of data often requires quantitative and spatial analysis methods, environmental and engineering geosciences students are required to take mathematics courses through calculus, statistics, computational methods and geographic information systems (GIS). In addition, one year each of physics and chemistry (including corresponding laboratories) are required.

Earth Science Education Option

The undergraduate earth science education option provides students with a broad earth science curriculum that meets the earth science content area goals for secondary earth science teaching. Certification for earth science teaching is not provided in this program. For more information about obtaining licensure, see the Pre-Education webpage.

The courses required to complete a B.S. degree in the Department of Geosciences under the earth science education option include Earth's dynamic systems, geoscience fundamentals, geoscience field observations, resources and the environment with the corresponding laboratory, mineralogy, structural geology, elementary geophysics, paleontology, igneous and metamorphic petrology, sedimentology and stratigraphy, astronomy with the corresponding laboratory, meteorology, oceanography, senior seminar and several elective courses. The science courses are sequenced to increase student understanding of both the breadth and depth of what makes up the Earth sciences.

Because the Earth sciences rely upon the collateral sciences, earth science education majors must take one semester each of chemistry, biology, and physics. Because the acquisition and manipulation of data commonly requires quantitative and spatial analysis methods, earth science education students are required to take courses in calculus, statistics, computational methods and geographic information systems (GIS).

Geosciences Minor

The Department of Geosciences offers a minor in Geosciences for students who wish to develop a working knowledge of geology but who are majoring in other disciplines. In order to minor in geosciences, a student must take: a) Earth science with corresponding laboratory (or elements of geology) and Earth-life system, or b) Earth’s dynamic systems. In addition to these courses, a student must take 12 credit hours of geoscience courses at the 3000- and/or 4000-level and have a minimum GPA of 2.0.

Foreign Language Requirement

The College of Science's foreign language requirement may be fulfilled by one of the following:

1. Taking the third year (level III) of one foreign language in high school.
2. Taking the equivalent of an 1106 foreign language course at an accredited university or community college.

Note: A student who has not completed two (2) units of a single foreign language in high school must earn six (6) semester hours of college level credit in a foreign language (i.e., both 1105 and 1106). These six hours are in addition to the 120 hours required for graduation.

3. Credit by examination for a foreign language. The credit by exam option is available only to students who have gained knowledge of a foreign language without the benefit of formal training.

4. Students whose native language is not English may be exempted from the foreign language requirement by demonstrating satisfactory knowledge of the foreign language as prescribed by the Department of Foreign Languages. **(Note: No credit is granted.)**

Field Camp

The Department of Geosciences requires that undergraduate majors in the geology option complete a six semester credit-hour summer field camp before they graduate. This requirement is normally fulfilled in the summer following either the junior or senior year.

The departmental Study Abroad Program in Riva San Vitale, Switzerland offers coursework to meet the field camp requirement. This is as part of a semester-long geoscience experience in which students are taught in southern Switzerland by Virginia Tech faculty. The program is optional but can be seamlessly embedded into students’ curricula.

Switzerland is the only field camp option offered by Virginia Tech. Geology students can also select a suitable six semester credit-hour summer field camp from among the many offered at other universities. Many of our majors have attended field camps in the western United States, but there are other field camps overseas that the department has direct experience with. Students are reminded that they should check with the departmental field camp advisor (Dr. Richard Law) before applying for dean’s approval for the camp they have chosen. The department maintains a current list of available camps on-line at https://drive.google.com/file/d/1FTJ9iNY5ev1eyoczQzFb69dSP/view?usp=sharing. Students are also encouraged to file applications late in the fall term or during winter break, especially for the more popular camps, because most camps fill their rosters on a “first-come, first-served” basis.

There are two field camps originating in Virginia (James Madison’s camp run in Ireland and George Mason’s camp run in Italy), and students should be aware that attendance at field camps outside Virginia might involve substantial expense for tuition, fees, and travel. **Because the university has no direct connection with any field camps, Virginia Tech financial aid does not cover these expenses.** Some field camps may provide scholarship assistance, and other opportunities for aid through professional societies or other institutions may be available.
GEOS Free Time, “GEOS Tuesdays”

All Geosciences students will be enrolled in the Tuesday night Free Time CRN. This is a block of time on Tuesday nights from 5:00 pm until 8:00 pm during which events for all Geosciences students will be scheduled, such as career information sessions, guest workshops, or social events.

Policy 91: Progress Towards Degree

All Geosciences students will be monitored for Progress Towards Degree, sometimes referred to as Policy 91. Existing university rules require an overall GPA of 2.0 and in-major GPA of 2.5 or above for graduation. The university recognizes that it becomes very difficult to meet this graduation requirement if the GPA is too low earlier in the degree. For this reason, the university enforces, through probation and suspension, an overall 2.0 at all times.

For similar reasons, we require all majors to maintain an in-major GPA (GEOS courses only) of at least 2.5 at all times.

Any Geosciences major whose in-major GPA falls below 2.5 at the end of any semester will have one semester of probation to bring the GPA to or above 2.5. Failure to do so will result in blocking of the student’s registration by the department. Students who anticipate not being able to raise their GPA to a satisfactory level at the end of the probationary semester must promptly discuss the situation with their academic advisor and may be asked to change to a more suitable major. See checksheet for details.

Transferring into Geosciences

Many students who major in Geosciences have begun their academic studies in other departments or other schools. Transferring into one of the geoscience options is relatively simple if the student has a satisfactory background, including a minimum overall GPA of 2.0. However, transferring between majors after the beginning of the second year often means that a student cannot graduate in four years. Because each situation is unique, it is necessary for any student, who is considering transferring to any of our six options, to discuss their specific program with the academic advisor.

Transfer of Course Credit from Other Schools

The transfer of course credit (when grades are “C” or above) from one university to another is relatively routine for many courses if it is possible to identify specific correlative courses at Virginia Tech. If no correlative course exists at Virginia Tech, credit will generally be transferred but only as meeting general elective course requirements. The transfer of course credits from community colleges is handled in a similar manner but is limited to a maximum of 60 credits. The transfer website is at http://www.tranguide.registrar.vt.edu/.
Once students are enrolled at Virginia Tech, it is highly recommended that they discuss any anticipated transfer credits with their academic advisor before taking the courses at another school in order to ensure that the transfer will be accepted. The University requires that 18 of the last 45 credit hours be taken in residence at Virginia Tech, regardless of the number of credits transferred into the student’s degree program. (Note: Grades do not transfer.)

FRESHMAN COMPUTER REQUIREMENTS

The Department of Geosciences does not have a platform (PC or Macintosh) or format (laptop or tablet) preference. It does not require any software beyond the University’s baseline requirements. For more information, please visit Virginia Tech’s computer requirements website at http://www.compreq.vt.edu/

FINANCIAL ASSISTANCE

The Department has numerous endowed accounts used for scholarships and research funding, as well as several scholarships from industry, that are available to undergraduate majors in the geosciences. Additional scholarship information is available on the College of Science Scholarships page or by contacting the academic advisor.

EMPLOYMENT OUTLOOK

The Department of Geosciences at Virginia Tech has an excellent record for employment of its graduates, approximately one-third of whom are women. Currently, there is a rapid growth in the demand for geosciences expertise in industrial, governmental, and educational institutions, including the oil and mining industries, engineering and environmental consulting firms, highway departments, state geologic surveys, water resource agencies, the Forest Service and other conservation agencies, the U.S. Geological Survey, state Geological Surveys, natural history museums, and colleges and universities. Bachelor degree recipients in geology are most frequently employed as field assistants (a lot of geologic work goes on out-of-doors) or as laboratory technicians. It is emphasized, however, that an M.S. degree is generally regarded as the optimal degree for many professional career paths in the geosciences.

FACILITIES AND SERVICES

THE GEOSCIENCES LIBRARY

LIBRARY RESOURCES

Library materials in support of the geosciences are fully integrated into the main collection. Most print books and journals are located on the third floor of Newman Library, with some related to engineering or mining located on the fifth floor. Maps and air photos are kept on the
The first floor of the library. Some materials are housed off-campus but these may be recalled for use as needed. The University Libraries also offer an extensive collection of online books and journals through its website. Research assistance and individual consultations are available.

The Museum of Geosciences Facilities and Programs

The Museum of Geosciences (MoGs) is a tangible way the Department of Geosciences fulfills Virginia Tech’s Land Grant Mission to create, preserve, and provide information about science and technology. Students and faculty are encouraged to use the Museum as a platform for engagement. Exhibits and programs are open to the public free of charge. Annually, the Museum serves 8,000+ visitors including VT students, PK-12 youth, teachers, campus visitors, homeschoolers, camps, families, and community members.

Students in the past have: led group tours, presented youth programs (both onsite and offsite), designed and installed exhibits, developed lessons and materials for teachers, hosted work sessions (Code in the Museum), offered a long-running seminar series for communicating science (Research a la Mode), convened meetings and clubs, run Museum social media accounts, made marketing materials, provided collections management, prepared and curated specimens, coordinated the GeoFair and Mineral Sale attended by over 600 people, and helped make the Museum a vibrant place for those interested in Geosciences. The Museum welcomes student projects!

Computer Labs

In order to assist the University in supporting lecture and lab activities, the department maintains a computer lab in Derring Hall.

PIDs and E-mail

Upon admission, students are assigned a nine digit Virginia Tech identification number. Students must then use this identification number to create a PID (“Personal IDentifier”), which is the username student’s use, to access various computer services at Virginia Tech. Instructions for creating a PID are available at https://vt.edu/admissions/undergraduate/apply/pid.html.

All Virginia Tech students receive an “@vt.edu” email address, and alumni are now able to keep their Virginia Tech email addresses after graduation. Announcements are sent to students by email, and students are expected to check their Virginia Tech email accounts regularly.

Because the PID a student chooses determines what their primary Virginia Tech email address will be (“PID@vt.edu”), the department encourages students to choose a PID that they would not be uncomfortable using in a professional setting, such as a job search.

Students also have access to the Hokie SPA, a website that allows students to access their contact information, class schedule, grades, student account, and award and refund letters. You
must have an activated PID in order to use this valuable service. Hokie SPA is available at https://banweb.banner.vt.edu/ssb/prod/twbkwbis.P_WWWLogin.

SEMINARS

Weekly seminars are generally held in Derring 4069 or via Zoom on Fridays at 3:30 PM, with refreshments at 4:30 PM. Check announcements to confirm the modality. Most speakers are from other universities, industry, or governmental organizations. Undergraduates are **strongly encouraged** to attend. A list of speakers is available in Derring 4044. You can also see the speakers on the department calendar: https://calendar.google.com/calendar/r?cid=vt.edu_biqomh73od3sca11n6f4gg8amk@group.calendar.google.com.

PROFESSIONAL DEVELOPMENT

Geology Club

This society, managed by undergraduates, organizes several functions each year for geology students and faculty. The club sponsors several seminars and information programs each semester, including discussion sessions on interviewing, professional standards, and career development. The club also runs field trips to selected localities and schedules topical lectures during the academic year, including a field camp informational evening each year.

Geophysical Society of Virginia Tech

This organization’s goals are to promote the use of geophysical tools for the earth scientist and assist students at Virginia Tech in their research that involves geophysics. The society has sponsored lunchtime seminars, raised funds for the purchase of geophysical software and hardware, and sponsored students at geophysical conferences. All students with an interest in geophysics are encouraged to join.

Sigma Gamma Epsilon

This organization is an honor society for the earth scientist. Members must have an interest in the earth sciences, have taken at least 10 semester hours of earth science courses, maintain a 3.00 GPA in the earth sciences, and maintain a 2.67 GPA overall. The group activities include hikes, field trips, community service, and an educational outreach program.

American Association of Petroleum Geologists

The American Association of Petroleum Geologists (AAPG) Student Chapter is a student-led and student-organized group for those interested in learning about geoscience careers in the petroleum industry. The chapter serves as a focal point for developing leadership skills and a professional identity as well as interacting with others interested in this career path.
Black Students in STEM at VT (BSS)

The mission of Black Students in STEM is to provide students of African descent within Virginia Tech’s College of Science with academic, professional, and entertaining opportunities, resources, and activities that will be beneficial within both their undergraduate and postgraduate careers. Black Students in STEM strive to create a safe space for club members that will foster a sense of community and togetherness as well as achieve significant personal and professional development.

Widening Inclusivity in the Geosciences (WINGS)

This discussion group was founded to increase diversity, equity, and inclusion in geosciences, and in all science, by providing a venue to discuss career development, mentoring, and diversity, and the inevitable challenges faced at every level of academia and professional careers in science.